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Abstract

Using a new fundamental theory based on bit-strings we derive a finite and discrete

version of the solutions of the free one particle Dirac equation as segmented trajectories with

steps of length h/mc along the forward and backward light cones executed at velocity :t=c.

Interpreting the statistical fluctuations which cause the bends in these segmented trajectories

as emission and absorption of radiation, these solutions are analagous to a fermion propagator

in a second quantized theory. This allows us to interpret the mass parameter in the step

length as the physical mass of the free particle. The radiation in interaction with it has the

usual harmonic oscillator structure of a second quantized theory. We sketch how these free

particle masses can be generated gravitationally using the combinatorial hierarchy sequence

(3, 10,137, 21_7 + 136), and some of the predictive consequences.

1 Bit-String Paths and Trajectories

Bit-String Physics, which we have also called Discrete Physics, [1, 2] grew out of the discovery

of the combinatorial hierarchy by A.F. Parker-Rhodes in 1961. [3] A convenient introduction is

provided by the Proceedings of the 9th meeting of the Alternative Natural Philosophy Association.

[4] Recent work is summarized at the end of this paper.

In a technical sense, about all we need from the theory for this paper is the fact that we employ

a universe of bit-strings generated by the algorithm called program universe in DP. Define a bit-

string a containing W ordered bits by its sequentially ordered elements a_ E 0, 1, w E 1,2, 3, ..., W,
Wand its Hamming measure a by a = E_,=law := ]a(W)]. Define discrimination, symbolized by "(_",

between two bit-strings by the ordered elements (a • b)_ = (a_, - b_)2; this is 1 when a_ -_ b_o

and 0 when a,_ = bw. Starting from a universe of strings of length W, all that program universe

does is to pick two strings arbitrarily and discriminate them. If the result is non-null (i.e. the two

strings differ), the discriminant is adjoined to the universe and the process begins again. If the

two strings discriminate to the null string (i.e 0_, = 0 for all w), we concatenate an arbitrary bit

to the growing end of each string (i.e. W ---* W + 1) and the process begins again.

We consider two strings a, b and their discriminant a q)b. Given no further information,

we now show that the situation can be described by four integers which are invariant under any

permutation of the ordering parameter w applied simultaneously to all three strings. Let nl0 be

the number of positions where a_o = 1, b,o = 0, n01 the number of positions where a_o = 0, b_, = 1,

nll the number of positions where a_ = 1, b_ = 1, and n0o the number of positions where a_, = 0,

b_o = 0. Then

a=nlo+nal; b=nol+n11; la®bl=nl0+n01 (1)
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nl0 + n01 + nil + n0o = W (2)

Note that the three non-null Hamming measures a, b, [a q)b[ are independent of both n00 and

W. Only one of those two parameters can be chosen arbitrarily, subject to the constraint that

W > n_0 + n01 + nl_, or noo >_ 0. It is the independence of our result from both string length

and permutation of the order parameter which allows the statistics of the bit-strings generated by

program universe to differ from the binomial distribution usually assigned to Bernoulli sequences,
or "random walks".

The "random walk" with which we will be concerned is obtained from our more general model

by defining a single, shorter string of length nl0 + n01 by c_ = 1 if a,_ = 1, b_, = 0, and c,o = 0 if

aw = 0, b,o = 1. Then r = nl0 is the number of l's and g = n01 is the number of O's in e(r + g), We

now view this situation as describing the "motion" of a "particle" which is taking discrete steps of

length h/rnc in space and h/mc 2 in time at velocity 4-c along the light cones. This is the starting

point suggested%y Feynman[5] and articu_ted,, for example, by Jacobson and Schulman[6] for

a derivation of the Dirac equation in 1+1 dimensions. If theparticle is assumed to start at the

origin (0, 0) in the z, ctplane, their boundary condition on the traj_:ect0ries connecting two events

at (0,0) and (x, ct) is x = (r - t)(h/mc), ct = (r +e)(h/mc). We tie our model to this same

space-time trajectory, but as noted above include an additional degree of freedom.

We now classify any string e by the number of bends k(e), which co_unts the number of times a

sequence of l's changes to a sequence of O's or visa versa. As McGoveran discovered,this number

is simply computed from the elements of e by k(e) w-i= E,_=I (c_+1 - c,_) 2. We are interested here in

the number of bends in the trajectory string of length r + g = nl0 + n01 These strings fall into four

classes: RR, LL, RL and LR. For class RR the first and last steps are to the right; it has k + 1

right-moving segments, k left-moving segments and k bends; note that k = 0 corresponds to the

forward light cone. Similarly LL has k + 1 left-moving segments, k right-moving segments and k

bends. RL and LR cannot have k = 0 and have k right-moving segments, left-moving segments and

bends. This classification is the same as in Jacobson and Schulman, but our statistical treatment

is different.

In order to distinguish the connectivity we make between the two events from the space-

time trajectories considered by Feynman, we call them paths. It is the interpretation of the

additional two parameters nll and n0o that allows us to extend our single particle treatment to an

interpretation that has features in common with second quantized relativistic field theory. In the

case of a statistically causal trajectory, time ticks ahead at a constant rate. If the particle does

not take a step to the right, it must take a step to the left. Although our particle follows the same

trajectory in space, if we encounter an example of w corresponding to either n_a or n00 it does

not move in the single particle configuration space that is all the Feynma n approach contains.
We interpret this as representing background processes going on in program universe which do

not directly affect the particle. In a second quantized relativistic field theory these "disconnected

diagrams" are the first to be removed in a renormalization program. Although conceptually crucial

to the way we count numbers of paths, they do not enter directly into our calculations.

_ssing light cone coord{nal_esl-a bend can be specified by any one of the r positions on the

forward light cone and by any one of the g positions on the backward light cone. However,

because of the greater freedom in our string generation, there is no statistical correlation between

them. There are r k ways we can pick a position on the forward light cone and gk on the left. All

we need do is insure that the restrictions imposed by the four classes of trajectories given above

484

i



are met. Further, the order in which we make the choices is irrelevant, so we must divide each

of these factors in the relative probability by kI. Since they are independent we must multiply

rk/k! by ¢_/k! to get the (unnormalized) probability that both will occur in an ensemble of strings

characterized by k bends and meeting our boundary conditions.

We conclude that the relative frequency of paths in the space of bit-strings of length W > r + g

which meet our space-time boundary conditions will have the values

rk+, gk

P_n(r,g) = [_-_ i)._][_ ]

r_ gk+,

PkLL(r,g) = [_.Vl[(_Ti).y]

(3)

(4)

(5)

2 Formal Derivation of the Dirac Equation

Write the Dirac Equation in 1+1 dimensions with h = 1 = c = 1 = m as

¢, = (o/at - Ola_)¢_;¢_= -(a/at + O/Ox),t_1

With z 2 = t _ - x _ = 4rg, this equation is solved by

2r J1 2g Jlex = Jo(z) + (z); ¢_ = Jo(z) - -- (z)
Z z

where J0 and J, are the standard, real Bessel functions. We note that

(6)

(7)

Further

Hence

Since

. rj gJ
Jo(z) = _j=o(-1)J(z/2)2"i/(j!)2= E i=o(-1)J[-:7][ .-:7]

3'3'
(s)

J1 =-J_ = Ej=,j(-1)J+'(z/2)2J-' /(j!) 2 (9)

k rk+l gk
2rj,z = Zk=o(-1) _. k! (10)

2t'd, E ' 1'k_ ek+'
z = k=ot- ) k!(k+l)! (11)

1
J; = J0 - :J, (12)

z

we can now relate the solution of the differential equation to our relative frequency counts, as we
now demonstrate.

We must now interpret the index 1, 2 in the Dirac equation, where it refers to the two spin-

states, in the context of our bit-string model. We assume (since there is no coulomb interaction

in the problem) that the bends in the trajectories correspond to the emission or absorption of
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a 7-ray, and hence to a spin flip. We connect Ca and ¢2 with the two (global) laboratory spin

projection states and the four classes of trajectories as follows. Let ¢1 correspond to correspond

to the wave function for which the laboratory spin projection is +}h. Consider first the RR

trajectories with k + 1 right moving segments k left moving segments and k bends. For k even the
.... rk-_l gk

relat,ve frequency of such trajector,es ,s Pnn(r,g) = [_][_.] as we have already seen Assume. ,

that the particle starts moving to the right with positive spin; since it experiences an even number

of spin flips,it will have at the end points spin projection +} as desired. However, if it started to
the left with the same positive spin projection, it would have to take an odd number of bends to

end up moving to the right. But then it has an odd number of spin-flips. Since what is conserved

is global rather than local spin, these cases must be subtracted from the first to get the net number

of relative cases with positive spin projection. Consequently, for these two classes taken together,

the contribution to Cl of trajectories which end with a step to the right is

_.k+l Ok

¢_ = Ek-°(--1)k[ ;+1 '][_] = _J,(z)- ( ).
(13)

Note that by including the k = 0 case we have normalized the sum to the forward light cone; this

we can do because only relative frequencies and no absolute probabilities are involved.

Note also that negative frequencies simply mean that we have a preponderance of cases with

the wrong helicity compared to that specified by the label. Similarly, if we construct the relative

frequencies of trajectories which end up moving to the left and contribute to Ca we find that

So

Similarly

r k gk

C L = Ek=0(--1)k[_..][_] = Jo(z) (14)

¢, = C_ + C L = Jo(s) + 2rj_(z). (15)
Z

¢_ = C_ + C L = J0(s)- 2gJ_(z). (16)
Z

Thus, by imposing the spin projection conservation law on our relative frequency counts, we arrive

at the same formal expression that is obtained by the series solution of the free particle Dirac

equation in 1+t dimensions. Since, for either derivation, the truncation of the series is a practical

necessity in any application to laboratory data, we have achieved our formal goal.

3 Second Quantized Interpretation

In our formal derivation, we avoided introducing a "free particle Hamiltonian"; we took our time

evolution from the program universe generation of bit-strings. But the labeling of the two spin

components Ca, C2, was ad hoc. In a more detailed treatment, we would develop the spin, angular

momentum, energy, momentum, and space-time discrete coordinates consistently from bit-strings.

We will present this full discussion elsewhere. [7]

Here we must content ourselves with supplying a label to each of the three strings already

invoked in our generation process. This can be simply the first two bits in the string. The system
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we model consists of fermions labeled by f = (10), antifermions t = (01), and bosons b = (11). To

these labels we concatenate bit-strings representing the propagation of the three types of particle

in either space-time or momentum-energy space. The general connection between the three when

there is an interaction, corresponding roughly to a vertex in a Feynman Diagram, is

f@¢Ob = 0 (17)

In this broader context, the single particle trajectory we have been following can be thought of

as a particle moving forward in time or an antiparticle moving backward in time, and the two

events as space-like rather than time-like separated. This replaces left-right motion in space with

forward-backward motion in time, and the spin conservation we invoked with fermion number

minus antifermion number conservation. This not only extends our derivation to the full x, ct

plane rather than confining it to the forward light cone, but also shows that the single particle

"wave functions" we derived have the appropriate CPT symmetry for use as basis functions in a

second quantized relativistic field theory.

Once we have accepted this extended context, we can interpret the bends in the single particle

trajectory we used above as due to the emission and absorption of quanta with probability rk/k!,

etc. Thus the bends in the trajectory are analagous to the states of the atoms in the walls of a

black body enclosure invoked by Planck in his derivation of the black body spectrum. Because of

the connection to radiation we have established (elsewhere) in our theory, the appearance of the

usual statistical factor makes contact with conventional theory. Derivation of the usual connection

between radiation states and harmonic oscillator models can proceed in a normal fashion. This

was one reason for presenting this new result at this Workshop. Rather than go on translating

familiar results into unfamiliar language, or visa versa, we hope you will find it of more interest

to hear where this new approach to fundamental theory leads.

To conclude this section, we emphasis that any free particle which satisfies the Dirac equation

can be thought of as interacting with the radiation background, while retaining the same mass. The

fact that our space-time propagation comes from program universe rather than from a Hamiltonian

allows us to remove the major "self-energy" contribution which occurs in a second quantized field

theory by symmetry and equate it to zero. Once we include interactions, there will be finite changes

in the effective mass, but no infinite mass renormallzation. Our theory is "born renormalized".

For us the mass in the free particle Dirac equation a finite first approximation of the physical

mass; it is not the "infinite bare mass" of renormaIization theory.

4 A New Fundamental Theory

"Bit-string physics" is a new, fundamental theory based on information theoretic concepts derived

primarily from recent work in computer science. This theory has already achieved considerable

conceptual clarity and quantitative success. In this section we present an outline of the underlying

concepts and how they find physical application, following closely an earlier summary. [8]

We start from sequential counter firings with space interval L ± AL and time interval T + AT.

We base our theory on invariant squared-intervals c2T 2 - L 2 between counter firings. We model

event intervals by bit-strings [i.e. finite ordered sequences of O's and l's] with N1 l's and No

O's. We connect our model to laboratory events by taking L = (N1 - No)(h/mc), T = (N1 +
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No)(h/mc2). Calling any conceptual carrier of conserved quantum numbers between two distinct

events a "particle", the velocity v of the particle is then given by v = [(N1 - No)/(N1 + N0)]c.

If we now consider three counters, with associated clocks synchronized by limiting velocity

signals, we can model the system by three bit-strings of the same length which add (using XOR,

i.e. addition modulo 2) to the null string. The number of l's in the strings satisfy the triangle

inequalities, and hence can be used to define the angles between the lines connecting the counters.

It also follows that the velocities as defined above satisfy the usual relativistic velocity addition

law; this shows that our integer theory is "Lorentz invariant" for finite and discrete rotations

and boosts. We prove that the usual position, momentum and angular momentum commutation

relations follow from the fact that finite rotations in three dimensions do not commute.

In order to identify particles within the model we attach labels to the content strings which

describe the (finite and discrete) space-time structure. Using 16 bits, the label gives us the 6

quarks, 3 neutrinos, W +, Z0,'y and colored gluons of the standard model. Three strings which add

to the null string map onto a Feynman diagram vertex. Baryon number, lepton number, charge

and color are conserved; color is necessarily confined.

Mapping the (2, 4, 16) decomposition of the labels onto 22 - 1 = 3; 23 - 1 = 7; 2 r - 1 = 127

we obtain the cumulative cardinals (3, 10, 137), which are the first three levels of the four level

combinatorial hierarchy, discovered by A.F. Parker-Rhodes in 1961. The first level describes chiral

neutrinos, the second charged leptons and the third colored quarks. We justify the identification

of the 137 as a first approximation to hc/e 2 by correctly modeling the relativistic Bohr hydro-

gen atom, and improve on this result by deriving both the Sommerfeld formula and a logically

consistent correction factor: hc/e 2 137/(1 1= 3ox-Y_) = 137.0359 674. [9] Weak-electromagnetic

unification at the "tree level" comes about by using the same geometrical argument to calcu-

late the electron mass in ratio to the proton mass either from the weak or the electromagnetic

interaction and equating the two results. Predictions from the theory are given in Table I.

Extending our label length and mapping from 16 to 256 we get the fourth (terminal) cardinal

of the combinatorial hierarchy: 212_+ 136 _ 1.7 x 103s _ hc/Gm_, suggesting gravitational closure.

Since we have baryon number conservation, we can consider an assemblage of nucleons and anti-

nucleons with baryon number +1, charge +e, spin ½h containing N = hc/Gm_ pairs with average

separation h/mpc. Since the escape velocity for a massive particle from this assemblage exceeds

c, it is gravitostatically stable against particle emission, but is unstable to energy loss due to

Hawking radiation. Thanks to our baryon number conservation it ends up as a rotating, charged

black hole with Beckenstein number hc/Gm_ [i.e. the number of bits of information lost in its

formation [10]] which is indistinguishable from a (stable) proton. This extends Wheeler's "it from

bit" [11] to particle physics. It also provides us with a non-perturbative mass scale relative to

which mass ratios of particles which satisfy the free particle Dirac equation derived above can be

measured.
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5 Fundamental Principles

The theory has grown from results that many physicists rejected as "numerological" to a framework

that provides a consistent way to compute several fundamental constants of physical interest. It is

based on fundamental principles that we believe should appeal to physicists who are sympathetic

to the operational approach of Bridgman and the early work of Heisenberg. These principles

are finiteness, discreteness, finite computability, absolute non-uniqueness leg. In the absence of

further information, all members of a (necessarily finite) collection must be given equal weight.]

and our procedures must be strictly constructive. For us, the mathematics in which the Book of

Nature is written is finite and discrete. We model nature by context sensitive bits of information.

In this sense we are participant observers.

Physics, as a science of measurement, can expect that at least some of the structures uncovered

in nature could result from the way we perform experiments. For example, Stillman Drake [12]

has discovered that Galileo measured the ratio of the time it takes for a pendulum to swing to

the vertical through a small arc to the time it takes a body to fall from rest through an equal

distance as 948/850 = 1.108 2 .... We now compute this ratio as 7r/2x/_ = 1.110 7 .... Thus Galileo

measured this constant to about 0.3 % accuracy. [13] We now believe that this constant will be

the same "anywhere that bodies fall and pendulums oscillate" independent of the units of length
and time.

In any theory satisfying our principles which counts events by a single sequence of integers,

any metric when extended to large counts can have at most three homogeneous and isotropic

dimensions in our finite and discrete sense synchronized by one universal ordering operator. [14]

More complex degrees of freedom, indirectly inferred to be present at "short distance" automati-

cally "compactify". Hence we can expect to observe at most three absolutely conserved quantum

numbers at macroscopic distances and times. Guided by current experience, we can take these to

be lepton number, charge and baryon number, connected to the z-component of weak isospin by

the extended Gell-Mann Nishijima rule. These are reflected in the experimentally uncontroverted

stability of the proton, electron and electron-type neutrino. This choice is empirical but not ar-

bitrary, since structures with appropriate conservation laws isomorphic with this interpretation

arise in our construction.

Take the chiral neutrino as specifying two states with lepton number 4-1 and no charge. They

couple to the neutral vector boson Z0. In the absence of additional information, these states close.

The 4 electron states couple to two helical gamma's and the coulomb interaction. These seven

states can be generated by any 3-vertex which includes two electron states and an appropriate

gamma. These 3 + 7 = 10 states when considered together then generate the W +. This completes

the leptonic sector in the first generation of the standard model of quarks and leptons. Bit-strings

of length 6 provide a compact representation of these states which closes under discrimination

(exclusive-or), and conserves both lepton number and the z component of weak isospin at each

vertex. No unobserved states are predicted at this level of complexity, and no observed states are

missing.

Two flavors of quarks and three colored gluons provide the seven elements of the baryonic

sector which generate the inferred 127 quark-antiquark, 3 quark, 3 antiquark, 8 gluon ... states

(16 fermions times a color octet minus the state with no quantum numbers) needed for the "valence

level" description of the quark model. Bit-strings of length 8 provide a compact model using seven
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discriminately independent basis strings and again close producing only the appropriate states at

this level of complexity. Combining them with the leptonic states allows the strings representing

the vector bosons to be extended to length 14, producing all the vertices and only the vertices

which occur in the standard weak-electromagnetic unification of the first generation of the standard

model. Extending the whole scheme to strings of length 16 we get the three generations which are

observed experimentally (and a slot with the quantum numbers of the top quark). The quarks

have baryon number 1/3 and charges -t-1/3,-t-2/3 as required. The 0 _ 1 bit-string symmetry

makes CPT invariance automatic. As already noted, if we have only three large distance quantum

numbers, color (although conserved) is confined, and generation number is not conserved in flavor

changing decays.
We are now in a position to talk about why we obtain the value of 137 in our first contact

between the hierarchical structure generated by program universe and experimental numbers.

Empirically only one of the 137 states required by the standard model of quarks and leptons

corresponds to the coulomb interaction. Hence, by our principle of absolute non-uniqueness, the

probability of this interaction occurring is 1/137 in the absence of further information.

Our basic quantum mechanical postulates are that (a) the square of the invariant interval

between two events connected by a "particle" which carries conserved quantum numbers and

conserved 3-momentum between them, is the product of two integers times (h/mc) 2 and that (b)

space-like correlations for particle states with the same constant velocity can occur only an integer

number n_ of deBroglie wavelengths (,k = h/p) apart. These give us relativistic kinematics and

the usual commutation relations for position, momentum and angular momentum.

If we model the hydrogen atom by events a distance r from a center we must have na,k = 27rr.

This interpretation is supported by noting that if the radius vector sweeps out equal areas in equal

times, AA/A 2 = (n_ - 1/4)(1/2rr) 2 and with g = n_ - 1/2, the angular momentum is g(g + 1)h _.

Since these events occur with probability 1/137n_, we get the relativistic Bohr formula [15] for

the hydrogen spectrum. When we include a second degree of freedom, and take proper account

of the ambiguities in counting, we get not only the Sommerfeld formula but the formula for a

given above. Similarly, the fact that the basic Fermi interaction involves 16 possible states of

four fermions gives us x/2Gv = (256mp) -2 where the square root comes from the conventional

interaction Lagrangian to which experimental numbers are compared, and rnp comes from the

stability of the proton.
Our critics sometimes compare the constants we compute with a calculation of the dielectric

constant of diamond as an analogy to how complicated the number hc/e 2 must be from their point

of view. We accept the challenge. When they assert that the dielectric constant of diamond can

be calculated from first principles, they must assume that they already know a number of physical

constants. Of course one can relate the standards of mass, length and time as measured in the

laboratory to three dimensional constants (which could be c, h and G) that occur, self-consistently,

in several structures derived from "first principles". But to get to diamond they will also need

_, me, and Mc in well defined relation to those units, as well as the fact that the carbon nucleus

has charge +6 in units of e. Otherwise their calculation has no potential empirical test.
We claim that within their framework, these three numbers are too complicated to calculate

from first principles. In fact, when Weinberg discusses how a finite coupling constant might

emerge from currently acceptable theory, his errors are so large that he cannot even contemplate

a quantitative prediction that can be confronted by experiment. In contrast my values for a,
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and me are good to six or seven significant figures, and I can argue that my "first principles"

allow me to predict that the common isotopes of carbon will have masses of approximately 12

and 13 proton masses. I have systematic ways of improving these estimates, and also-- thanks

to my physical cosmology -- of estimating the relative abundance of these two isotopes on a

terrestrial-type planet with an age of 4.5 x 109 years in a solar system of the kind in which we are

conducting experiments. Somewhere along this line my calculation from "first principles" would

find empirical supplements useful, but I believe no where near as soon as theirs.

I would locate the difference in point of view between us as coming from our different views

of "space-time". If the "quantum vacuum" (which I would prefer to call a "quantum plenum")

of renormalized second quantized relativistic field theory is the underlying concept, its properties

certainly change as you "squeeze" it. The received wisdom today is that if the squeezing produces

an energy density something like 10a6 times that of the proton the "strong", "electromagnetic"

and "weak" interactions come together (one basic "coupling constant" -- grand unification) and

that if one can extend the theory another three orders of magnitude, gravitation will find its

appropriate place in the scheme. It seems to me that adopting "principles", however beautiful,

that force one to go thirteen orders of magnitude beyond currently possible experimental tests to

define fundamental parameters is -- to say the least -- a peculiar methodology for a physicist.

On the other hand, if one starts here and now with separated charges and massive particles and

"empty" or "constructed" space as the first approximation, one can measure masses and coupling

constants in a well defined way. If one can -- as we claim -- get good approximations for these

values from "first principles" and systematically improve the predictions, I fail to see why such

values cannot be considered "primordial". After the universe becomes optically thin, we predict

about 2 × 10 -1° baryons per photon. This both is in agreement with observation and supports

our "empty space" philosophy.
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